
Solutions to Exam Algebraic Structures,
June 21st, 2019, 9.00pm–12.00pm, MartiniPlaza, L. Springerlaan 2.

Please provide complete arguments for each of your answers. The exam consists
of 3 questions each subdivided into 4 parts. You can score up to 3 points for each

part, and you obtain 4 points for free.
In this way you will score in total between 4 and 40 points.

(1) In this exercise we denote the ring Z[t]/(t3) by R. Elements of R we write
as f(t) mod (t3), for some f(t) ∈ Z[t].
(a) Show that t+ 1 mod (t3) is a unit in R and find its inverse.

• Answer: 1 + t3 = (1 + t)(1 − t + t2) ∈ Z[t]. So in R, we have
1 = (1 + t)(1− t+ t2) mod (t3).

(b) Does, apart from 1 mod (t3) and 0 mod (t3), the ring R contain any
idempotent (i.e., an element γ ∈ R with γ2 = γ)?
• Answer: Let γ = a + bt + ct2 mod (t3) ∈ R such that γ2 = γ.

So we have γ2 = a2 + 2abt + (b2 + 2ac)t2 mod (t3) = a + bt +
ct2 mod (t3). This implies a = a2 and since a ∈ Z, we have a =
0 or 1. If a = 0, then b = c = 0. If a = 1, then b = c = 0. So the
only idempotent elements in R are 0 mod (t3) and 1 mod (t3).

(c) Show that no unitary rings R1 and R2 exist in which 0 6= 1, such that
R ∼= R1 ×R2.
• Answer: The only unitary subrings of R are R and the ring

of constants. Hence R cannot be isomorphic to the product of
non-trivial unitary rings.
• Answer 2: By part (b), we find that R contains no idempotents

other than 0 and 1, whereas R1 × R2 contains more of these
(such as (0, 1)). Since isomorphisms preserve idempotents, we
conclude that they cannot be isomorphic.

(d) For a, b, c ∈ Z, show that a + bt + ct2 mod (t3) is a unit in R, if and
only if a = ±1.
• Answer: u = a+ bt+ ct2 mod (t3) is a unit in R iff there exists

(a′ + b′t+ c′t2 mod (t3)) such that

1 mod (t3) = (a+ bt+ ct2 mod (t3))(a′ + b′t+ c′t2 mod (t3))

= aa′ + (ab′ + ba′)t+ (ac′ + ca′ + bb′)t2 mod (t3).

So if u is a unit then aa′ = 1, hence a = ±1. On the other
hand, ±1− bt+ (±b2− c)t2 mod (t3) is the inverse of ±1 + bt+
ct2 mod (t3). Hence if a = ± then u is a unit.

(2) Consider the ring R = Q[x, y].
(a) Show that if P ⊂ R is a prime ideal, then P ∩Q[x] is a principal ideal

in Q[x] that is either generated by 0 or by an irreducible element of
Q[x].
• Answer: The ring Q[x] is a subring of Q[x, y]. Suppose that
a, b ∈ Q[x] are such that ab is an element of P ∩ Q[x]. Then



ab ∈ P hence a or b is in P (as P is a prime ideal). This implies
that a ∈ P ∩Q[x] or b ∈ P ∩Q[x]. This concludes that P ∩Q[x]
is a prime ideal in Q[x]. Moreover, since PQ[x] is a PID, the
statement follows.

(b) Show that Q[x, y] · (x− y2) is a prime ideal in R.
• Answer: Define evaluation homomorphism evy2 : Q[x, y] →
Q[y] : f(x, y) 7→ f(y2, y). Then the kernel ker(evy2) is the ideal
Q[x, y] · (x− y2). So we have Q[x, y]/(x− y2) ∼= evy2(Q[x, y]) ⊂
Q[y]. Since Q[y] is an integral domain, this ideal is prime.
• Answer 2: Let R′ = Q[x], where R = R′[y]. Then y2 − x is an

Eisenstein polynomial at x, so it is irreducible. Since Q[x, y] is
a UFD (by applying Theorem V.4.1 twice), we have that (y2−x)
is a prime ideal by Theorem V.3.2.

(c) Show that x3 + y3 + 1 ∈ R is irreducible.
• Answer: Let R′ = Q[y]. Then R = R′[x]. Then we can write
x3 + (y3 + 1) ∈ R′[x]. This is an Eisenstein polynomial for the
irreducible element y + 1 ∈ R′.

(d) Prove that the ideal in R generated by the two polynomials x − y2

and x3 + y3 + 1 is a maximal ideal in R.
• Answer: The evaluation map evy2 in (b) is surjective hence gives

an isomorphism Q[x, y]/(x − y2) ∼= Q[y]. Theorem II.3.10 tells
us that Q[x, y]/(x− y2, x3 + y3 + 1) ∼= Q[y]/(y6 + y3 + 1). Since
y6 +y3 +1 is irreducible in Q[y] and Q[y] is a PID, we have that
Q[y]/(y6 + y3 + 1) is a field and hence (x− y2, x3 + y3 + 1) is a
maximal ideal in Q[x, y].

(3) In this final exercise, R denotes the field F2[t]/(t
4 + t+ 1).

(a) Show that indeed R is a field.
• Answer: Since F2[t] is a PID, it suffices to show that f(t) :=
t4+t+1 is an irreducible element in F2[t]. This polynomial does
not have a linear factor over F2 since f(0) 6= 0 6= f(1) modulo 2.
Suppose that f = gh for some monic irreducible polynomials of
degree 2 in F2[t]. Since the only degree 2 irreducible polynomial
in F2[t] is t2 + t + 1, we obtain (t2 + t + 1)2 = t4 + t + 1. But
this does not hold. Hence t4 + t+ 1 is irreducible.

(b) Find the minimal polynomial of t2 + t mod (t4 + t+ 1) over the prime
field of R.
• Answer: Let α := t+(t4+t+1) ∈ R. We have R ∼= F2(α), where
α is a root of the polynomial t4 + t+ 1 ∈ F2[t]. The prime field
of R is F2. So we want to find the minimal polynomial of α2 +α
over F2. The minimal polynomial of α2+α is of degree at least 2
as α2+α /∈ F2. Moreover, we see that (α2+α)2+α2+α+1 = 0.
So the minimal polynomial of α2 + α is t2 + t+ 1 ∈ F2[t].

(c) Show that ϕ : f(t) mod (t4 + t + 1) 7→ f(t + 1) mod (t4 + t + 1) is a
well-defined automorphism of the field R.



• Answer: Well-definedness: Let g(t) and h(t) be two polynomials
in F2[t] which are in the same class mod (t4+t+1), i.e., g(t) =
h(t) + s(t) · (t4 + t+ 1), for some polynomial s(t). Then we have

g(t+ 1) = h(t+ 1) + s(t+ 1) · ((t+ 1)4 + (t+ 1) + 1)

= h(t+ 1) + s(t+ 1) · (t4 + t+ 1)

So g(t+1) and h(t+1) are in the same equivalence class. Hence
the map is well-defined and in particular ϕ(0) = 0.
Field homomorphism:
1. ϕ(1) = 1 is clear.

2. ϕ(f(t) + g(t)) = ϕ((f + g)(t)) = (f + g)(t+ 1) = f(t+ 1) +

g(t+ 1) = ϕ(f(t)) + ϕ(g(t)).

3. Similary, ϕ(f(t) · g(t)) = ϕ(f(t)) · ϕ(g(t)). To put it simply,
once we have shown that ϕ is well-defined, given f(t) and g(t),
it is clear that the equivalence classes of (f +g)(t+ 1) and f(t+
1) + g(t+ 1) are the same (and likewise for the product).
Automorphism: Since R is a finite field it is enough to show
that ϕ is injective. Since non-trivial field homomorphisms are
injective, this holds.

(d) What are the possible orders of elements in the group of units R×?
• Answer: III.5.4 Corollary tells us that the group of units in a

field is cyclic. The order of the group is 16− 1 = 15. Hence the
possible orders of elements in this group are 1, 3, 5, and 15.


