SOLUTIONS TO EXAM ALGEBRAIC STRUCTURES,

June 21st, 2019, 9.00pm—12.00pm, MartiniPlaza, L. Springerlaan 2.
Please provide complete arguments for each of your answers. The exam consists
of 3 questions each subdivided into 4 parts. You can score up to 3 points for each

part, and you obtain 4 points for free.
In this way you will score in total between 4 and 40 points.

(1) In this exercise we denote the ring Z[t]/(¢*) by R. Elements of R we write
as f(t) mod (t3), for some f(t) € Z][t].
(a) Show that ¢t + 1 mod (¢*) is a unit in R and find its inverse.

o Answer: 1+ ¢ = (1+t)(1 —t+t*) € Z[t]. So in R, we have
1= (1+¢)(1—¢t+¢t*) mod (¢).

(b) Does, apart from 1 mod (#3) and 0 mod (¢%), the ring R contain any
idempotent (i.e., an element v € R with 72 = ~)?

o Answer: Let v = a + bt + ct> mod (t*) € R such that v* = 7.
So we have v* = a® + 2abt + (b* 4 2ac)t* mod (£*) = a + bt +
ct? mod (t3). This implies a = a® and since a € Z, we have a =
Oorl. Ifa=0,thenb=c=0. Ifa=1, thenb=c=0. So the
only idempotent elements in R are 0 mod (t*) and 1 mod (£?).

(¢) Show that no unitary rings Ry and R exist in which 0 # 1, such that
R= Rl X Rg.

o Answer: The only unitary subrings of R are R and the ring
of constants. Hence R cannot be isomorphic to the product of
non-trivial unitary rings.

e Answer 2: By part (b), we find that R contains no idempotents
other than 0 and 1, whereas Ry X Ry contains more of these
(such as (0,1)). Since isomorphisms preserve idempotents, we
conclude that they cannot be isomorphic.

(d) For a,b,c € Z, show that a + bt + ct* mod (¢?) is a unit in R, if and
only if a = +1.

o Answer: u = a+ bt + ct* mod (¢3) is a unit in R iff there exists
(@' + V't + t* mod (t3)) such that

1 mod (%) = (a + bt + ct* mod (¢*))(a’ + b't + ¢t* mod (¢*))
= ad' + (ab’ + ba')t + (ac + ca’ + bb')t* mod (t%).
So if u is a unit then aa’ = 1, hence a = +1. On the other

hand, +1 — bt + (£b% — ¢)t? mod (#3) is the inverse of +1 + bt +
ct? mod (t3). Hence if a = =+ then u is a unit.

(2) Consider the ring R = Q[z,y].
(a) Show that if P C R is a prime ideal, then PN Q[z] is a principal ideal
in Q[x] that is either generated by 0 or by an irreducible element of
Q[x].
e Answer: The ring Q[z] is a subring of Qlx,y]. Suppose that
a,b € Qlz] are such that ab is an element of P N Q[z]. Then



ab € P hencea orb isin P (as P is a prime ideal). This implies
that a € PNQz| or b € PNQ[z]. This concludes that PNQ[x]
is a prime ideal in Q[x]. Moreover, since PQ[x] is a PID, the
statement follows.

(b) Show that Q[z,y] - (x — y?) is a prime ideal in R.

o Answer: Define evaluation homomorphism ev,2 : Q[z,y] —
Qly] : f(z,y) — f(y*,y). Then the kernel ker(ev,:) is the ideal
Qlz,y] - (x —y?). So we have Qlz,y]/(x — y*) = ev,2(Qlx,y]) C
Qly]. Since Qly| is an integral domain, this ideal is prime.

o Answer 2: Let R’ = Q[z], where R = R'[y]. Then y* — x is an
Fisenstein polynomial at xz, so it is irreducible. Since Q|x,y] is
a UFD (by applying Theorem V.4.1 twice), we have that (y*—1x)
1s a prime ideal by Theorem V.53.2.

(¢) Show that 2 + y* + 1 € R is irreducible.

o Answer: Let R' = Qly]. Then R = R'[z]. Then we can write
23+ (y® + 1) € R'[z]. This is an Eisenstein polynomial for the
irreducible element y+1 € R’.

(d) Prove that the ideal in R generated by the two polynomials x — y?
and 23 + y3 + 1 is a maximal ideal in R.

o Answer: The evaluation map ev,z in (b) is surjective hence gives
an isomorphism Q|z,y]/(x — y*) = Q[y]. Theorem I1.3.10 tells
us that Qlz,y|/(x —y*, 2* + y* + 1) = Q[y]/(v° + v* + 1). Since
y® +1y2 +1 is irreducible in Q[y] and Q[y] is a PID, we have that
Qly]/(y® +v®+1) is a field and hence (x —y*, 23 +y> +1) is a
mazimal ideal in Q[z,y].

(3) In this final exercise, R denotes the field Fy[t]/(t* + ¢ + 1).
(a) Show that indeed R is a field.
o Answer: Since Folt] is a PID, it suffices to show that f(t) :=
t*+t+1 is an irreducible element in Fy[t]. This polynomial does
not have a linear factor over Fy since f(0) # 0 # f(1) modulo 2.
Suppose that f = gh for some monic irreducible polynomials of
degree 2 in Fylt]. Since the only degree 2 irreducible polynomial
in Folt] is t* +t + 1, we obtain (> +t+1)> =t* +t+ 1. But
this does not hold. Hence t* 4+t + 1 is irreducible.
(b) Find the minimal polynomial of ¢> 4+t mod (#* 4+t + 1) over the prime
field of R.
o Answer: Let o :=t+(t*+t+1) € R. We have R = Fy(a), where
a is a root of the polynomial t* +t + 1 € Fy[t]. The prime field
of R is Fy. So we want to find the minimal polynomial of o+«
over Fy. The minimal polynomial of o®+« is of degree at least 2
as &> +a ¢ Fy. Moreover, we see that (o®+a)*+a?+a+1=0.
So the minimal polynomial of o + a is 1> +t + 1 € Fy[t].
(c) Show that ¢ : f(t) mod (t* +¢+ 1) — f(t+ 1) mod (t* +t+ 1) is a
well-defined automorphism of the field R.



o Answer: Well-definedness: Let g(t) and h(t) be two polynomials
in By [t] which are in the same class mod (t*+t+1), i.e., g(t) =
h(t)+s(t) - (t* +t+1), for some polynomial s(t). Then we have

gt+ D) =h(t+1)+st+1)-(t+D*+t+1)+1)
=h(t+1)+s(t+1) - " +t+1)

So g(t+1) and h(t+1) are in the same equivalence class. Hence

the map is well-defined and in particular ¢(0) = 0.

Field homomorphism:

1. (1) =1 is clear.

2. p(f() +9(0) = o((f+9)(1) = (f+9)(t+1) = f(E+1) +
g(t+1) = o(f(1) + ©(g(t))-
5. Similary, o(f(t) - g(t)) = ©(f(t)) - ¢(g(t)). To put it simply,
once we have shown that ¢ is well-defined, given f(t) and g(t),
it is clear that the equivalence classes of (f+¢g)(t+1) and f(t+
1)+ g(t + 1) are the same (and likewise for the product).
Automorphism: Since R is a finite field it is enough to show
that ¢ is injective. Since non-trivial field homomorphisms are
injective, this holds.

(d) What are the possible orders of elements in the group of units R*?

o Answer: II1.5.4 Corollary tells us that the group of units in a

field is cyclic. The order of the group is 16 — 1 = 15. Hence the
possible orders of elements in this group are 1,3,5, and 15.




