Solutions to Exam Algebraic Structures,
June 21st, 2019, 9.00pm-12.00pm, MartiniPlaza, L. Springerlaan 2.
Please provide complete arguments for each of your answers. The exam consists of 3 questions each subdivided into 4 parts. You can score up to 3 points for each part, and you obtain 4 points for free.
In this way you will score in total between 4 and 40 points.
(1) In this exercise we denote the ring $\mathbb{Z}[t] /\left(t^{3}\right)$ by R. Elements of R we write as $f(t) \bmod \left(t^{3}\right)$, for some $f(t) \in \mathbb{Z}[t]$.
(a) Show that $t+1 \bmod \left(t^{3}\right)$ is a unit in R and find its inverse.

- Answer: $1+t^{3}=(1+t)\left(1-t+t^{2}\right) \in \mathbb{Z}[t]$. So in R, we have $1=(1+t)\left(1-t+t^{2}\right) \bmod \left(t^{3}\right)$.
(b) Does, apart from $1 \bmod \left(t^{3}\right)$ and $0 \bmod \left(t^{3}\right)$, the ring R contain any idempotent (i.e., an element $\gamma \in R$ with $\gamma^{2}=\gamma$)?
- Answer: Let $\gamma=a+b t+c t^{2} \bmod \left(t^{3}\right) \in R$ such that $\gamma^{2}=\gamma$. So we have $\gamma^{2}=a^{2}+2 a b t+\left(b^{2}+2 a c\right) t^{2} \bmod \left(t^{3}\right)=a+b t+$ $c t^{2} \bmod \left(t^{3}\right)$. This implies $a=a^{2}$ and since $a \in \mathbb{Z}$, we have $a=$ 0 or 1. If $a=0$, then $b=c=0$. If $a=1$, then $b=c=0$. So the only idempotent elements in R are $0 \bmod \left(t^{3}\right)$ and $1 \bmod \left(t^{3}\right)$.
(c) Show that no unitary rings R_{1} and R_{2} exist in which $0 \neq 1$, such that $R \cong R_{1} \times R_{2}$.
- Answer: The only unitary subrings of R are R and the ring of constants. Hence R cannot be isomorphic to the product of non-trivial unitary rings.
- Answer 2: By part (b), we find that R contains no idempotents other than 0 and 1 , whereas $R_{1} \times R_{2}$ contains more of these (such as (0,1)). Since isomorphisms preserve idempotents, we conclude that they cannot be isomorphic.
(d) For $a, b, c \in \mathbb{Z}$, show that $a+b t+c t^{2} \bmod \left(t^{3}\right)$ is a unit in R, if and only if $a= \pm 1$.
- Answer: $u=a+b t+c t^{2} \bmod \left(t^{3}\right)$ is a unit in R iff there exists $\left(a^{\prime}+b^{\prime} t+c^{\prime} t^{2} \bmod \left(t^{3}\right)\right)$ such that

$$
\begin{aligned}
1 \bmod \left(t^{3}\right) & =\left(a+b t+c t^{2} \bmod \left(t^{3}\right)\right)\left(a^{\prime}+b^{\prime} t+c^{\prime} t^{2} \bmod \left(t^{3}\right)\right) \\
& =a a^{\prime}+\left(a b^{\prime}+b a^{\prime}\right) t+\left(a c^{\prime}+c a^{\prime}+b b^{\prime}\right) t^{2} \bmod \left(t^{3}\right) .
\end{aligned}
$$

So if u is a unit then $a a^{\prime}=1$, hence $a= \pm 1$. On the other hand, $\pm 1-b t+\left(\pm b^{2}-c\right) t^{2} \bmod \left(t^{3}\right)$ is the inverse of $\pm 1+b t+$ $c t^{2} \bmod \left(t^{3}\right)$. Hence if $a= \pm$ then u is a unit.
(2) Consider the ring $R=\mathbb{Q}[x, y]$.
(a) Show that if $P \subset R$ is a prime ideal, then $P \cap \mathbb{Q}[x]$ is a principal ideal in $\mathbb{Q}[x]$ that is either generated by 0 or by an irreducible element of $\mathbb{Q}[x]$.

- Answer: The ring $\mathbb{Q}[x]$ is a subring of $\mathbb{Q}[x, y]$. Suppose that $a, b \in \mathbb{Q}[x]$ are such that $a b$ is an element of $P \cap \mathbb{Q}[x]$. Then
$a b \in P$ hence a or b is in P (as P is a prime ideal). This implies that $a \in P \cap \mathbb{Q}[x]$ or $b \in P \cap \mathbb{Q}[x]$. This concludes that $P \cap \mathbb{Q}[x]$ is a prime ideal in $\mathbb{Q}[x]$. Moreover, since $P \mathbb{Q}[x]$ is a PID, the statement follows.
(b) Show that $\mathbb{Q}[x, y] \cdot\left(x-y^{2}\right)$ is a prime ideal in R.
- Answer: Define evaluation homomorphism $\mathrm{ev}_{y^{2}}: \mathbb{Q}[x, y] \rightarrow$ $\mathbb{Q}[y]: f(x, y) \mapsto f\left(y^{2}, y\right)$. Then the kernel $\operatorname{ker}\left(\mathrm{ev}_{y^{2}}\right)$ is the ideal $\mathbb{Q}[x, y] \cdot\left(x-y^{2}\right)$. So we have $\mathbb{Q}[x, y] /\left(x-y^{2}\right) \cong \operatorname{ev}_{y^{2}}(\mathbb{Q}[x, y]) \subset$ $\mathbb{Q}[y]$. Since $\mathbb{Q}[y]$ is an integral domain, this ideal is prime.
- Answer 2: Let $R^{\prime}=\mathbb{Q}[x]$, where $R=R^{\prime}[y]$. Then $y^{2}-x$ is an Eisenstein polynomial at x, so it is irreducible. Since $\mathbb{Q}[x, y]$ is a UFD (by applying Theorem V.4.1 twice), we have that $\left(y^{2}-x\right)$ is a prime ideal by Theorem V.3.2.
(c) Show that $x^{3}+y^{3}+1 \in R$ is irreducible.
- Answer: Let $R^{\prime}=\mathbb{Q}[y]$. Then $R=R^{\prime}[x]$. Then we can write $x^{3}+\left(y^{3}+1\right) \in R^{\prime}[x]$. This is an Eisenstein polynomial for the irreducible element $y+1 \in R^{\prime}$.
(d) Prove that the ideal in R generated by the two polynomials $x-y^{2}$ and $x^{3}+y^{3}+1$ is a maximal ideal in R.
- Answer: The evaluation map $\mathrm{ev}_{y^{2}}$ in (b) is surjective hence gives an isomorphism $\mathbb{Q}[x, y] /\left(x-y^{2}\right) \cong \mathbb{Q}[y]$. Theorem II.3. 10 tells us that $\mathbb{Q}[x, y] /\left(x-y^{2}, x^{3}+y^{3}+1\right) \cong \mathbb{Q}[y] /\left(y^{6}+y^{3}+1\right)$. Since $y^{6}+y^{3}+1$ is irreducible in $\mathbb{Q}[y]$ and $\mathbb{Q}[y]$ is a PID, we have that $\mathbb{Q}[y] /\left(y^{6}+y^{3}+1\right)$ is a field and hence $\left(x-y^{2}, x^{3}+y^{3}+1\right)$ is a maximal ideal in $\mathbb{Q}[x, y]$.
(3) In this final exercise, R denotes the field $\mathbb{F}_{2}[t] /\left(t^{4}+t+1\right)$.
(a) Show that indeed R is a field.
- Answer: Since $\mathbb{F}_{2}[t]$ is a PID, it suffices to show that $f(t):=$ $t^{4}+t+1$ is an irreducible element in $\mathbb{F}_{2}[t]$. This polynomial does not have a linear factor over \mathbb{F}_{2} since $f(0) \neq 0 \neq f(1)$ modulo 2 . Suppose that $f=g h$ for some monic irreducible polynomials of degree 2 in $\mathbb{F}_{2}[t]$. Since the only degree 2 irreducible polynomial in $\mathbb{F}_{2}[t]$ is $t^{2}+t+1$, we obtain $\left(t^{2}+t+1\right)^{2}=t^{4}+t+1$. But this does not hold. Hence $t^{4}+t+1$ is irreducible.
(b) Find the minimal polynomial of $t^{2}+t \bmod \left(t^{4}+t+1\right)$ over the prime field of R.
- Answer: Let $\alpha:=t+\left(t^{4}+t+1\right) \in R$. We have $R \cong \mathbb{F}_{2}(\alpha)$, where α is a root of the polynomial $t^{4}+t+1 \in \mathbb{F}_{2}[t]$. The prime field of R is \mathbb{F}_{2}. So we want to find the minimal polynomial of $\alpha^{2}+\alpha$ over \mathbb{F}_{2}. The minimal polynomial of $\alpha^{2}+\alpha$ is of degree at least 2 as $\alpha^{2}+\alpha \notin \mathbb{F}_{2}$. Moreover, we see that $\left(\alpha^{2}+\alpha\right)^{2}+\alpha^{2}+\alpha+1=0$. So the minimal polynomial of $\alpha^{2}+\alpha$ is $t^{2}+t+1 \in \mathbb{F}_{2}[t]$.
(c) Show that $\varphi: f(t) \bmod \left(t^{4}+t+1\right) \mapsto f(t+1) \bmod \left(t^{4}+t+1\right)$ is a well-defined automorphism of the field R.
- Answer: Well-definedness: Let $g(t)$ and $h(t)$ be two polynomials in $\mathbb{F}_{2}[t]$ which are in the same class mod $\left(t^{4}+t+1\right)$, i.e., $g(t)=$ $h(t)+s(t) \cdot\left(t^{4}+t+1\right)$, for some polynomial $s(t)$. Then we have

$$
\begin{aligned}
g(t+1) & =h(t+1)+s(t+1) \cdot\left((t+1)^{4}+(t+1)+1\right) \\
& =h(t+1)+s(t+1) \cdot\left(t^{4}+t+1\right)
\end{aligned}
$$

So $g(t+1)$ and $h(t+1)$ are in the same equivalence class. Hence the map is well-defined and in particular $\varphi(\overline{0})=\overline{0}$.
Field homomorphism:

1. $\varphi(\overline{1})=\overline{1}$ is clear.
2. $\varphi(\overline{f(t)}+\overline{g(t)})=\varphi(\overline{(\underline{f+g)(t)})}=\overline{(f+g)(t+1)}=\overline{f(t+1)}+$ $\overline{g(t+1)}=\varphi(\overline{f(t)})+\varphi(\overline{g(t)})$.
3. Similary, $\varphi(\overline{f(t)} \cdot \overline{g(t)})=\varphi(\overline{f(t)}) \cdot \varphi(\overline{g(t)})$. To put it simply, once we have shown that φ is well-defined, given $f(t)$ and $g(t)$, it is clear that the equivalence classes of $(f+g)(t+1)$ and $f(t+$ $1)+g(t+1)$ are the same (and likewise for the product).
Automorphism: Since R is a finite field it is enough to show that φ is injective. Since non-trivial field homomorphisms are injective, this holds.
(d) What are the possible orders of elements in the group of units R^{\times}?

- Answer: III.5.4 Corollary tells us that the group of units in a field is cyclic. The order of the group is $16-1=15$. Hence the possible orders of elements in this group are 1,3,5, and 15.

