Solutions to Exam Algebraic Structures,

June 21st, 2019, 9.00pm–12.00pm, MartiniPlaza, L. Springerlaan 2.

Please provide complete arguments for each of your answers. The exam consists

of 3 questions each subdivided into 4 parts. You can score up to 3 points for each part, and you obtain 4 points for free.

In this way you will score in total between 4 and 40 points.

- (1) In this exercise we denote the ring $\mathbb{Z}[t]/(t^3)$ by R. Elements of R we write as $f(t) \mod (t^3)$, for some $f(t) \in \mathbb{Z}[t]$.
 - (a) Show that $t + 1 \mod (t^3)$ is a unit in R and find its inverse.
 - Answer: $1 + t^3 = (1 + t)(1 t + t^2) \in \mathbb{Z}[t]$. So in R, we have $1 = (1 + t)(1 t + t^2) \mod (t^3)$.
 - (b) Does, apart from 1 mod (t^3) and 0 mod (t^3) , the ring R contain any idempotent (i.e., an element $\gamma \in R$ with $\gamma^2 = \gamma$)?
 - Answer: Let $\gamma = a + bt + ct^2 \mod (t^3) \in R$ such that $\gamma^2 = \gamma$. So we have $\gamma^2 = a^2 + 2abt + (b^2 + 2ac)t^2 \mod (t^3) = a + bt + ct^2 \mod (t^3)$. This implies $a = a^2$ and since $a \in \mathbb{Z}$, we have a = 0 or 1. If a = 0, then b = c = 0. If a = 1, then b = c = 0. So the only idempotent elements in R are $0 \mod (t^3)$ and $1 \mod (t^3)$.
 - (c) Show that no unitary rings R_1 and R_2 exist in which $0 \neq 1$, such that $R \cong R_1 \times R_2$.
 - Answer: The only unitary subrings of R are R and the ring of constants. Hence R cannot be isomorphic to the product of non-trivial unitary rings.
 - Answer 2: By part (b), we find that R contains no idempotents other than 0 and 1, whereas $R_1 \times R_2$ contains more of these (such as (0,1)). Since isomorphisms preserve idempotents, we conclude that they cannot be isomorphic.
 - (d) For $a, b, c \in \mathbb{Z}$, show that $a + bt + ct^2 \mod (t^3)$ is a unit in R, if and only if $a = \pm 1$.
 - Answer: $u = a + bt + ct^2 \mod (t^3)$ is a unit in R iff there exists $(a' + b't + c't^2 \mod (t^3))$ such that

$$1 \mod (t^3) = (a + bt + ct^2 \mod (t^3))(a' + b't + c't^2 \mod (t^3))$$
$$= aa' + (ab' + ba')t + (ac' + ca' + bb')t^2 \mod (t^3).$$

So if u is a unit then aa' = 1, hence $a = \pm 1$. On the other hand, $\pm 1 - bt + (\pm b^2 - c)t^2 \mod (t^3)$ is the inverse of $\pm 1 + bt + ct^2 \mod (t^3)$. Hence if $a = \pm$ then u is a unit.

- (2) Consider the ring $R = \mathbb{Q}[x, y]$.
 - (a) Show that if $P \subset R$ is a prime ideal, then $P \cap \mathbb{Q}[x]$ is a principal ideal in $\mathbb{Q}[x]$ that is either generated by 0 or by an irreducible element of $\mathbb{Q}[x]$.
 - Answer: The ring $\mathbb{Q}[x]$ is a subring of $\mathbb{Q}[x, y]$. Suppose that $a, b \in \mathbb{Q}[x]$ are such that ab is an element of $P \cap \mathbb{Q}[x]$. Then

 $ab \in P$ hence a or b is in P (as P is a prime ideal). This implies that $a \in P \cap \mathbb{Q}[x]$ or $b \in P \cap \mathbb{Q}[x]$. This concludes that $P \cap \mathbb{Q}[x]$ is a prime ideal in $\mathbb{Q}[x]$. Moreover, since $P\mathbb{Q}[x]$ is a PID, the statement follows.

- (b) Show that $\mathbb{Q}[x, y] \cdot (x y^2)$ is a prime ideal in R.
 - Answer: Define evaluation homomorphism $\operatorname{ev}_{y^2} : \mathbb{Q}[x, y] \to \mathbb{Q}[y] : f(x, y) \mapsto f(y^2, y)$. Then the kernel $\operatorname{ker(ev}_{y^2})$ is the ideal $\mathbb{Q}[x, y] \cdot (x y^2)$. So we have $\mathbb{Q}[x, y]/(x y^2) \cong \operatorname{ev}_{y^2}(\mathbb{Q}[x, y]) \subset \mathbb{Q}[y]$. Since $\mathbb{Q}[y]$ is an integral domain, this ideal is prime.
 - Answer 2: Let $R' = \mathbb{Q}[x]$, where R = R'[y]. Then $y^2 x$ is an Eisenstein polynomial at x, so it is irreducible. Since $\mathbb{Q}[x, y]$ is a UFD (by applying Theorem V.4.1 twice), we have that $(y^2 x)$ is a prime ideal by Theorem V.3.2.
- (c) Show that $x^3 + y^3 + 1 \in R$ is irreducible.
 - Answer: Let $R' = \mathbb{Q}[y]$. Then R = R'[x]. Then we can write $x^3 + (y^3 + 1) \in R'[x]$. This is an Eisenstein polynomial for the irreducible element $y + 1 \in R'$.
- (d) Prove that the ideal in R generated by the two polynomials $x y^2$ and $x^3 + y^3 + 1$ is a maximal ideal in R.
 - Answer: The evaluation map ev_{y^2} in (b) is surjective hence gives an isomorphism $\mathbb{Q}[x, y]/(x - y^2) \cong \mathbb{Q}[y]$. Theorem II.3.10 tells us that $\mathbb{Q}[x, y]/(x - y^2, x^3 + y^3 + 1) \cong \mathbb{Q}[y]/(y^6 + y^3 + 1)$. Since $y^6 + y^3 + 1$ is irreducible in $\mathbb{Q}[y]$ and $\mathbb{Q}[y]$ is a PID, we have that $\mathbb{Q}[y]/(y^6 + y^3 + 1)$ is a field and hence $(x - y^2, x^3 + y^3 + 1)$ is a maximal ideal in $\mathbb{Q}[x, y]$.
- (3) In this final exercise, R denotes the field $\mathbb{F}_2[t]/(t^4+t+1)$.
 - (a) Show that indeed R is a field.
 - Answer: Since F₂[t] is a PID, it suffices to show that f(t) := t⁴+t+1 is an irreducible element in F₂[t]. This polynomial does not have a linear factor over F₂ since f(0) ≠ 0 ≠ f(1) modulo 2. Suppose that f = gh for some monic irreducible polynomials of degree 2 in F₂[t]. Since the only degree 2 irreducible polynomial in F₂[t] is t² + t + 1, we obtain (t² + t + 1)² = t⁴ + t + 1. But this does not hold. Hence t⁴ + t + 1 is irreducible.
 - (b) Find the minimal polynomial of $t^2 + t \mod (t^4 + t + 1)$ over the prime field of R.
 - Answer: Let $\alpha := t + (t^4 + t + 1) \in R$. We have $R \cong \mathbb{F}_2(\alpha)$, where α is a root of the polynomial $t^4 + t + 1 \in \mathbb{F}_2[t]$. The prime field of R is \mathbb{F}_2 . So we want to find the minimal polynomial of $\alpha^2 + \alpha$ over \mathbb{F}_2 . The minimal polynomial of $\alpha^2 + \alpha$ is of degree at least 2 as $\alpha^2 + \alpha \notin \mathbb{F}_2$. Moreover, we see that $(\alpha^2 + \alpha)^2 + \alpha^2 + \alpha + 1 = 0$. So the minimal polynomial of $\alpha^2 + \alpha$ is $t^2 + t + 1 \in \mathbb{F}_2[t]$.
 - (c) Show that $\varphi : f(t) \mod (t^4 + t + 1) \mapsto f(t+1) \mod (t^4 + t + 1)$ is a well-defined automorphism of the field R.

- Answer: Well-definedness: Let g(t) and h(t) be two polynomials in $\mathbb{F}_2[t]$ which are in the same class mod (t^4+t+1) , i.e., $g(t) = h(t) + s(t) \cdot (t^4+t+1)$, for some polynomial s(t). Then we have
- $g(t+1) = h(t+1) + s(t+1) \cdot ((t+1)^4 + (t+1) + 1)$

$$= h(t+1) + s(t+1) \cdot (t^4 + t + 1)$$

So g(t+1) and h(t+1) are in the same equivalence class. Hence the map is well-defined and in particular $\varphi(\overline{0}) = \overline{0}$.

Field homomorphism:

1. $\varphi(\overline{1}) = \overline{1}$ is clear.

$$\frac{2. \ \varphi(f(t) + g(t))}{g(t+1)} = \varphi((f+g)(t)) = (f+g)(t+1) = f(t+1) + g(t+1) = \varphi(\overline{f(t)}) + \varphi(\overline{g(t)}).$$

3. Similary, $\varphi(\overline{f(t)} \cdot \overline{g(t)}) = \varphi(\overline{f(t)}) \cdot \varphi(\overline{g(t)})$. To put it simply, once we have shown that φ is well-defined, given f(t) and g(t), it is clear that the equivalence classes of (f+g)(t+1) and f(t+1) + g(t+1) are the same (and likewise for the product).

Automorphism: Since R is a finite field it is enough to show that φ is injective. Since non-trivial field homomorphisms are injective, this holds.

- (d) What are the possible orders of elements in the group of units R^{\times} ?
 - Answer: III.5.4 Corollary tells us that the group of units in a field is cyclic. The order of the group is 16 1 = 15. Hence the possible orders of elements in this group are 1, 3, 5, and 15.